BCA3010 – COMPUTER ORIENTED NUMERICAL METHODS

Dear students get fully solved assignments

Send your semester & Specialization name to our mail id :

 

“ help.mbaassignments@gmail.com ”

or

Call us at : 08263069601

 

Assignment

 

PROGRAM BCA(REVISED FALL 2012)
SEMESTER 3
SUBJECT CODE & NAME BCA3010-COMPUTER ORIENTED NUMERICAL METHODS
CREDIT 4
BK ID B1643
MAX.MARKS 60

 

 

Q.1 Determine the relative error for the function (𝑥,,)=3𝑥2𝑦2+5𝑦2𝑧2−7𝑥2𝑧2+38

Where x = y = z = 1 and Δ𝑥=−0.05, Δ𝑦=0.001, Δ𝑧=0.02

Answer:- Relative error:- Let the true value of a quantity be x and the measured or inferred value x_0. Then the relative error is defined by:

where Delta x  is the absolute error. The relative error of the quotient or product of a number of quantities is less than or equal to the sum of their relative errors. The percentage error is 100% times the relative error.

 

 

Q.2 Solve by Gauss elimination method.

2x + y + 4z = 12

4x + 11y – z = 33

8x – 3y + 2z = 20

Answer: – Given equation is: –

2x + y + 4z = 12 ——————————————– (1)

4x + 11y – z = 33 ——————————— (2)

8x – 3y + 2z = 20———————————– (3)

Multiplying equation1 with 11 and subtract it from equation 2 we get : –

18x + 45z = 99 —————————————

 

 

Q.3 Apply Gauss – Seidal iteration method to solve the equations

3x1 + 20x2 –x3 = –18

2x1 – 3x2 + 20x3 = 25

20x1 + x2 – 2x3 = 17

Answer: – In Gauss seidal method the latest values of unknowns at each stage of iteration are used in proceeding to the next stage of iteration.

Let the rearranged form of a given set of equation be

 

 

 

Q.4 Using the method of least squares, find the straight line y = ax + b that fits the following data:

X 0.5 1.0 1.5 2.0 2.5 3.0
Y 15 17 19 14 10 7

 

Answer: – The given straight line fit be y = ax+b. The normal equations of least squre fit are

aSxi2 + bSxi = Sxiyi —————- (1)

and    aSxi + nb = Syi  ——————— (2)

 

From the given data, we have

x y xy X2
0.5 15 7.5 0.25
1.0 17 17.0 1.00

 

 

 

Q.5 Using Lagrange’s interpolation formula, find the value of y corresponding to x = 10 from the following data:

X 5 6 9 11
F(x) 380 2 196 508

 

Answer:- Formula for Lagrange’s interpolation :-

Let Y = f(x) be a function which assumes the values f(x0), f(x1) ….. f(xn) corresponding to the values x: x1, x1 …..x¬n.

We have x0 = 5, x1 = 6, x2 = 9, x3 = 11

                                                  Y0 = 380, y1 = 2, y2 = 196, y3 = 508

Using Lagrange’s

 

 

 

Q.6 Find 𝑓′ (3), 𝑓′′ (7) and 𝑓′′′(12) from the following data.

X 2 4 5 6 8 10
Y 10 96 196 350 868 1746

 

Answer:-Given data is: –

X 2 4 5 6 8 10
Y 10 96 196 350 868 1746

 

F(X) 2 4 5 6 8 10

 

 

Dear students get fully solved assignments

Send your semester & Specialization name to our mail id :

 

“ help.mbaassignments@gmail.com ”

or

Call us at : 08263069601

 

Leave a Reply